Step of Proof: adjacent-singleton 11,40

Inference at * 
Iof proof for Lemma adjacent-singleton:


  T:Type, xyu:T. adjacent(T;[u];x;y False 
latex

 by ((((Unfold `adjacent` 0) 
CollapseTHEN (MaAuto))
CollapseTHEN (((Reduce (-1)) 

CoCollapseTHEN (((ExRepD
CollapseTHEN (Auto)))))) 
latex


C.


Definitionsadjacent(T;L;x;y), (x  l), , [car / cdr], A List, [], type List, #$n, , l[i], x:AB(x), x:AB(x), a < b, n - m, -n, n+m, ||as||, t  T, x:AB(x), x:A  B(x), s = t, Type, {i..j}, {x:AB(x)} , , i  j < k, A  B, P & Q, A, False, P  Q, Void
Lemmasfalse wf, int seg wf, length wf1, select wf

origin